ON THE PROBLEM OF A WING OF A GIVEN VOLUME WITH MINIMUM WAVE DRAG

(K ZADACHE O KRYLE ZADANNOGO OB' EMA S MINIMAL' NYM VOLNOVYM SOPROTIVLENIEM

PMM Vol.22, No.6. 1958, pp.826-828
E. B. BULYGINA
(Novosibirsk)
(Received 18 June 1958)

The problem is solved on the basis of linearized theory by the method of variation. The solution is obtained for a wing with an arbitrary leading edge, the equation of which is given by the power series.

Let $z(x, y)$ be the equation of the surface of the wing; then the volume of the wing is determined by the double integral of this function. over the area s, which is a projection of the wing upon the plane $z=0$:

$$
\begin{equation*}
v=\iint_{B} z d x d y \tag{1}
\end{equation*}
$$

The drag of the wing is determined by a summation of the projections of pressure forces, p, multiplied by the angle of inclination of the surface:

$$
\begin{equation*}
C_{x}=\frac{2}{s} \iint_{s} p \frac{\partial z}{\partial x} d x d y \quad\left(\alpha=\frac{\partial z}{\partial x}\right) \tag{2}
\end{equation*}
$$

The pressure at any point $P(s, y)$ on the surface of the wing with a supersonic leading edge is in turn determined by the double integral [1]

$$
\begin{equation*}
p=-2 \frac{\partial}{\partial x} \iint_{\nabla} \frac{\alpha(\xi, \eta)}{\sqrt{(x-\xi)^{2}-\beta^{2}(y-\eta)^{2}}} d \xi d \eta \tag{3}
\end{equation*}
$$

The area of integration, Δ, represents the portion of the surface of the wing cut out by the forward Mach cone with the apex at point $P(s, y)$.

Thus the problem reduces to an isoparametric determination of the functional (2) for a given value of the functional (1). This problem can be simply solved for the type of surfaces where

$$
\frac{\partial^{2} \alpha}{\partial y^{2}}=a_{2}(x)=\text { const }
$$

In that case the wave drag of a wing with a chord b can be deterained by the formula suggested by Kogan:

$$
\begin{equation*}
C_{x}=\frac{4}{s \beta} \int_{0}^{b}\left\{\overline{\alpha^{2}(x)}+\frac{a_{2}(x)}{\beta^{3}} \int_{0}^{x} \overline{\alpha(\eta)}(x-\eta) d \eta\right\} d x \tag{4}
\end{equation*}
$$

Changing the order of integration in (4) and introducing the function

$$
\begin{equation*}
\varphi(\eta)=\int_{\eta}^{b} a_{2}(x)(x-\eta) d x \tag{5}
\end{equation*}
$$

Formula (4) can then be written

$$
\begin{equation*}
C_{x}=-\frac{4}{s \beta} \int_{0}^{b}\left\{\overline{\alpha^{2}(x)}+\frac{\overline{a(x)} Q(x)}{\beta^{2}}\right\} d x \tag{6}
\end{equation*}
$$

For a given plan form of the wing, function $z=z(x, y)$ must be such that in the plane $z=0$ it will generate a given wing profile $y= \pm y(x)$. This condition will be satisfied if the surface of the wing is represented by

$$
\begin{equation*}
z=f(x)\left[\gamma^{2}(x)-y^{2}\right] \tag{7}
\end{equation*}
$$

Then the volume of the wing will be

$$
\begin{equation*}
c_{0}=\frac{4}{3} \int_{0}^{b} f(x) \gamma^{3}(x) d x \tag{8}
\end{equation*}
$$

According to the method of Lagrangian multipliers for minimizing functional (6) for the given equation (8) it is necessary to examine Euler's equation for the function $F(x)$:

$$
\begin{equation*}
F(x)=\overline{a^{2}(x)}+\frac{1}{3^{2}} \overline{a(x)} O(x)+\lambda f(x) \gamma^{3}(x) \tag{9}
\end{equation*}
$$

Considering (5), the Euler equation can be written

$$
\begin{equation*}
F_{\varphi}-\frac{d}{d x}\left\{F_{f}-\frac{d}{d x} F_{f^{\prime}}\right\}=0, \quad F_{\varphi}=-\frac{\bar{\alpha}}{\beta^{2}} \tag{10}
\end{equation*}
$$

Noting that F_{ϕ} can be expressed as a derivative with respect to x;

$$
F_{\varphi}=\frac{1}{\sigma^{2}} \frac{d}{d x}\left\{\frac{4}{3} f \gamma^{3}+c\right\}
$$

The first integral of (10) is

$$
\begin{equation*}
-\frac{39}{15} \frac{d}{d x}\left(f^{\prime} \cdot \because^{\prime 0}\right)-\frac{16}{3} f \gamma^{2} Y^{12}-\frac{16}{3} j \gamma^{4} \gamma^{11}+\frac{8}{\beta^{2}} \eta^{3}=c_{1}-\lambda \because^{n} \tag{11}
\end{equation*}
$$

If the leading edge of the wing passes through the origin $(y=0$. $x=0$), the constant C_{1} becomes zero. Then, after cancellation by γ^{2},
the first integral (11) reduces to:

$$
\begin{equation*}
4 f^{\prime \prime} \because 2+10 f^{\prime}\left(\because^{2}\right)^{\prime}+5 f\left[\left(\because^{2}\right)^{\prime \prime}-\beta^{2}\right]=\lambda \tag{12}
\end{equation*}
$$

Since the plan form of the wing is given, function γ is known. In the general case, the square of this function can be expressed by the series

$$
\begin{equation*}
\because^{2}=a_{0} x^{2}+a_{1} x^{3}-a_{2} x^{4}+\ldots \therefore a_{n} x^{n+2} \div \ldots \tag{13}
\end{equation*}
$$

The general solution of (12) is a sum of the particular solution and the general solution of the corresponding homogeneous equation. We seek the latter as a product of a certain power of x, x^{ρ} and a power series:

$$
\begin{equation*}
f_{1}(x)=x^{\kappa} \sum_{\varepsilon=0}^{\infty} x_{s} x^{\varepsilon} \tag{14}
\end{equation*}
$$

The equation for ρ is

$$
F_{0}(p)=4 p(p-1)+10 \cdot 2 p+3\left(2-\frac{1}{3^{2} a_{0}}\right)=0
$$

Solving it, we obtain two values of ρ

$$
\begin{equation*}
\rho_{1}=-2+\sqrt{\frac{3}{2}+\delta}, \quad \rho_{2}--2-1 \frac{3}{2}+\delta \quad\left(\delta=\frac{1}{3-a_{0}}\right) \tag{15}
\end{equation*}
$$

The coefficients of series (11), corresponding to these values of ρ, are obtained from the infinite system of equations

$$
\begin{gather*}
a_{0} \alpha_{1} F_{0}(p+1) \quad x_{11} a_{1} F_{1}(p)=0 \\
a_{0} \alpha_{2} F_{0}(p+2)+a_{1} \alpha_{1} F_{1}(p+1)+a_{1} \alpha_{0} F_{2}(p)=0 \tag{16}\\
\cdots \cdot \cdots \cdot \cdots \cdot \\
a_{0} \alpha_{n} F_{0}(p+n)+a_{1} x_{n-1} F_{1}(p+n-1)+a_{2} \alpha_{n-2} F_{2}(p+n-2)+\ldots a_{n} \alpha_{11} F_{n}(p)=0
\end{gather*}
$$

The function $F_{n}(\rho)$ is:

$$
\begin{equation*}
F_{n}(p)=1 p(p-1)+10 p(n+2) \perp 5(n+2)(n+1) \tag{17}
\end{equation*}
$$

Each equation of the system contains one coefficient more than the preceding, and therefore, by assigning an arbitrary value to a_{0}, it is possible, in terms of this, to express all the coefficients a_{1}, \ldots, a_{s}.

The particular solution of (12) is determined by the series

$$
\begin{equation*}
\because \sum_{h}^{\infty} \beta_{h} r^{h} \tag{18}
\end{equation*}
$$

coefficients of which are determined by the system of equations analogous to (16):

$$
\begin{aligned}
& n_{11} G_{0}(0) C_{10}=\lambda \\
& a_{0} G_{0}(1) \beta_{1}-a_{1} G_{1}(0) \beta_{0}=0 \\
& a_{0} C_{0}(2) \beta_{2}+a_{1} G_{1}(1) \beta_{1}+a_{2} F_{2}(0) \beta_{0}=0 \\
& a_{0} G_{0}(k) \beta_{k}+a_{1} G_{1}(k-1) \beta_{k}+1+\ldots+a_{k} \widetilde{F}_{k}(0) \beta_{0}=0
\end{aligned}
$$

where

$$
\begin{gather*}
G_{0}(k)=4 k(k-1) \div 10 \cdot 2 k+5(2-\delta) \tag{20}\\
G_{n}(k)=4 k(k-1)+10(n-2) k+5(n+2)(n+1)
\end{gather*}
$$

Since λ is an arbitrary multiplier, β_{0} can be considered arbitrary, and all the coefficients of the series (16) can be expressed in terms of it. The function $f(x)$ sought for is determined by the sum of the series:

$$
\begin{gather*}
f(x)=\alpha_{0}\left(\rho_{1}\right) x^{\rho_{1}}\left(1+\sum_{s=1}^{\infty} \frac{\alpha_{s}\left(\rho_{1}\right)}{\alpha_{0}\left(\rho_{1}\right)} \cdot r^{s}\right)+ \\
+\alpha_{0}\left(\rho_{2}\right) x^{\rho_{2}}\left(1+\sum_{s-0}^{\infty} \frac{\alpha_{s}\left(\rho_{2}\right)}{\alpha_{0}\left(\rho_{2}\right)} x^{s}\right)+\beta_{0}\left(1+\sum_{k=1}^{\infty} \frac{\beta_{k}}{\beta_{0}} x^{k}\right) \tag{21}
\end{gather*}
$$

The three arbitrary constants $\alpha_{0}\left(\rho_{1}\right), \alpha_{0}\left(\rho_{2}\right)$ and β_{0} are determined from the conditions:

1) On the trailing edge of the wing where $x=b$ the function must become zero;
2) The surface of the wing z must have the boundary at $y^{2}-y^{2}(x) \leqslant 0$;
3) The volume of the wing has a given value v_{0}.

Let us examine a practical case of a delta wing. In this case, series (14) contains only one member. The leading edge is determined by the equation $y= \pm k x$, therefore, in the solution of (21) all the coefficients $a_{s}\left(\rho_{1}\right)=a_{s}\left(\rho_{2}\right)=\beta_{k}=0$ when $s \geqslant 1$.

According to condition 2, $\alpha_{0}\left(\rho_{2}\right)=0$. The arbitrary constant β_{0} is obtained by satisfying condition 1 :

$$
\beta_{0}=\alpha_{11}\left(\rho_{1}\right) b^{\rho_{1}}
$$

For minimum drag, the equation of the surface of a delta wing of a given volume is:

$$
\begin{equation*}
z=\alpha_{0}\left(\rho_{1}\right)\left(x^{\rho_{1}} \quad l^{\rho_{1}}\right)\left(k^{-2} x^{2}-y^{2}\right) \tag{22}
\end{equation*}
$$

The constant $a_{0}\left(\rho_{1}\right)$ is determined by the given volume:

$$
v_{0}=\cdots \frac{1}{3} h^{3}-\frac{\rho_{1}}{\rho_{1}+4} b^{\rho_{1}+4} \alpha_{0}\left(\rho_{1}\right)
$$

The drag of a delta wing, the surface of which is expressed by (7) will be:

$$
C_{x_{\min }}=\frac{r_{1}^{2}}{s b^{2}} 12 \delta \frac{F_{1}+4}{F_{1}+2}\left[\frac{8 \rho_{1}+2!}{5}+\delta\right]
$$

For a delta wing with supersonic leading edge $(\beta=\delta=1)$, the minimum drag is

$$
c_{x_{11111}}=-1 \because S_{0} \text { : }
$$

The drag of the same wing with a wedge profile is $C_{x}=180 v_{0}{ }^{2}$.
As seen from the comparison the drag of a delta wing with the found surface (22) is 40 per cent less than that of a delta wing with a wedge profile.

BIBLIOGRAPHY

1. Krasil'shchikova, E. A. Krylo konechnogo razmakha v szhimaemom potoke (Wing of a Finite Aspect Ratio in Compressible Flov). GTTI, 1952.
2. Kogan. M.N. Nekotorye integral'nye svoistva sverkhzvukovykh techenii (Certain integral properties of supersonic flows). MAP, Tr. Tseut. Aero-Gidrodin. Inst. No. 687, 1955.
